a2 United States Patent

Leslie-Hurd et al.

US009355262B2

US 9,355,262 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54) MODIFYING MEMORY PERMISSIONS IN A
SECURE PROCESSING ENVIRONMENT

(71) Applicant: Intel Corporation, Santa Clara, CA
(US)

(72) Inventors: Rebekah Leslie-Hurd, Portland, OR
(US); Ilya Alexandrovich, Haifa (IL);
Ittai Anati, Haifa (IL); Alex Berenzon,
Zikhron Ya’akov (IL); Michael
Goldsmith, Lake Oswego, OR (US);
Simon Johnson, Beaverton, OR (US);
Francis McKeen, Portland, OR (US);
Carlos Rozas, Portland, OR (US); Uday
Savagaonkar, Portland, OR (US);
Vincent Scarlata, Beaverton, OR (US);
Vedvyas Shanbhogue, Austin, TX (US);
Wesley Smith, Raleigh, NC (US)

(73) Assignee: Intel Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

(21) Appl. No.: 14/141,941

(22) Filed: Dec. 27,2013

(65) Prior Publication Data
US 2015/0186659 Al Jul. 2, 2015

(51) Imt.ClL
GO6F 21/60 (2013.01)
GO6F 12/08 (2016.01)
GO6F 12/14 (2006.01)
GO6F 9/30 (2006.01)
GO6F 21/72 (2013.01)

(52) US.CL
CPC GO6F 21/604 (2013.01); GO6F 9/3004

(2013.01); GO6F 12/0875 (2013.01); GO6F
12/145 (2013.01); GO6F 12/1466 (2013.01);
GO6F 21/72 (2013.01)

(58) Field of Classification Search
CPC GOG6F 12/0808; GO6F 12/1027; GO6F
12/1466; GOGF 12/0875; GOG6F 12/145;
GOGF 9/3004; GOG6F 21/72; GO6F 21/604
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2008/0016315 Al* 1/2008 Cohenetal. 711207
2009/0150645 Al 6/2009 Ono et al.

2011/0231593 Al* 9/2011 Yasufukuetal. 711/3
2012/0110348 Al* 5/2012 Hofstee et al. 713/190
2012/0117301 Al* 5/2012 Wingardccoooovvniinn. 711/6

2012/0159184 Al 6/2012 Johnson et al.

FOREIGN PATENT DOCUMENTS

WO 2010057065 A2 5/2010
WO 2012087562 A2 6/2012
OTHER PUBLICATIONS

Extended European Search Report received for European Patent
Application No. 14193950.4 mailed on Jul. 10, 2015, 8 pages of
Search Report.

* cited by examiner

Primary Examiner — Chau Le
Assistant Examiner — Muhammad Chaudhry
(74) Attorney, Agent, or Firm — Thomas R. Lane

(57) ABSTRACT

Embodiments of an invention for modifying memory permis-
sions in a secure processing environment are disclosed. In one
embodiment, a processor includes an instruction unit and an
executionunit. The instruction unit is to receive an instruction
to modify access permissions for a page in a secure enclave.
The execution unit is to execute the instruction. Execution of
the instruction includes setting new access permissions in an
enclave page cache map entry. Furthermore, the page is
immediately accessible from inside the secure enclave
according to the new access permissions.

10 Claims, 6 Drawing Sheets

METHOD 600

| 810 enclave app requests OS to restrict permissions |

| 612 OS invokes EMODPR

—>]| 630 0S invokes ETRACK |

| 832 OS updates page tables |

¥
- 634 OS sends IPls

| 820 processor response to EMODPR begins | 7

+ " — | 836 enclave thread exit & TLB shootdown |
| 622 processor restricts EPC page permissions | 7

+ | 840 enclave app invokes EACCEPT |
| 624 processor stamps BEPOCH | T

| 850 enclave app attempts to access page |

| 626 processor response to EMODPR ends | T

| 852 enclave app accesses page |

US 9,355,262 B2

Sheet 1 of 6

May 31, 2016

U.S. Patent

Or} &0Ae(obrio)g UonBtLIOUY

acl Aowey weyshAg

0z 1uaby jouon empydiied

9041 MH 1d4300V3

S0t MH 34003

7011 MH 3dG0Nd

e-0b AMAH LINI3

c-0bE AAH Gav3

-0 MH 31V3d0d

01} J0ssao0ig

00} weisAg

| FHNOI4

US 9,355,262 B2

Sheet 2 of 6

May 31, 2016

U.S. Patent

007 HUN) U0 SSR00Y >.MOF_®§

U SoBLISIU
o5z sew | [vz eseg vES HUn SoBLSIH
£S5z uoneinByued pieA OvZ Od3
08¢ HdiNxd 757 Wun syoen
O£z @io0un
122 811 1z 91
8¢¢ WUy jolUos QL7 BUN jpaUoD
8cc NN 9Lz NN

zaz wun uondiioug

087 UM uoyNoaX3

7 BUN uoongsuy|

ZeZ wun =besoig

2.2 vun uondArug

0c¢e 800

042 BuUn uognosxg

1 Z HU} LoRonIsSy}

Z1Z nun obeiois

0lLg 30D

Q0¢ 108830044

¢ 34dNOl4

US 9,355,262 B2

Sheet 3 of 6

May 31, 2016

U.S. Patent

ace uoiBay eyeg

oze uoibeay 801

0l€ 8035

00¢ Od3

¢ JHNSOI4

US 9,355,262 B2

Sheet 4 of 6

May 31, 2016

U.S. Patent

89r HOQd3a || 89V HA-W || 89y ua-X || Popug-M || To¥ ¥a-d
0ot Anua WOd3
85y HOOd3d || 8S¥ HAW || 8SFHG-X || PSP UHG-A || ST ha-y
0S¥ Anus WOd3
Oty WOd3
vot ebeg ¥Zt obed
zop ddy zzy ddy
QT 2AB|aUg {oF 94BjouUg
Zi¥ SO
Ot weisig

14

NSO

00F 34N1O031IHOEY

US 9,355,262 B2

Sheet 5 of 6

May 31, 2016

U.S. Patent

abed sassaooe dde aagjous 955

+

dde aagjous spEISa1 Q0 P55 afed sassaooe dde oaejous geg
t ou t
gL saiepdn SO 766 \\\/

t ¢ /
X3V 0G5 811 w ebed
saf 9ce \\
e
/k\\ e
*

abed ssacoe o) sydwepe dde aaepus o

3
sajget abed sayepdn g0 Zes

t
sajge) sbed ajepdn 01 gO sisanbai dde saepus pge

7
Spus J4GOW3 01 esuodsal Jossanaid $Zg

t

suoissiitiad abed N43 spusixe sossaoosd 26

Y
suiBaqg J4010NT o1 asuodsas sossasosd gZg

t
000G AOH13W J4GOW3 sanoau dde sagppus gig

g FHNoid

Fy

US 9,355,262 B2

Sheet 6 of 6

May 31, 2016

U.S. Patent

abed sassodoe dde sAgpus 760

t spus HdQO W3 o) asucdsal jossasoid gzZg

abed ssanor 0 sidweaye dde aAepus 59 r
t HOO43g sdwess jossanoid 29

1d3D0VY3 sjoaut dde sABOUD OF0 ¥
t suoissiuiiad abed Nd3 sousal Jossanaid 779

UMODIOOUS §11 9 1IX2 peaiy} SABDUS 9C0 ¥
t suibaq HdO0W3 0} asuodsal jossanaid Q7o

Sidl Spuas SO ¥L9 3

t

HdGOW3 SHoAU GO LG

sajqe) obed sajepdn QO 7¢0 5
t . suoissituiad 101591 0} SO sisonbai dde aagpous gL g

AOYHL 3 S=H0AU GO 0ES

009 AOH13IN

9 34Nold

US 9,355,262 B2

1
MODIFYING MEMORY PERMISSIONS IN A
SECURE PROCESSING ENVIRONMENT

BACKGROUND

1. Field

The present disclosure pertains to the field of information
processing, and more particularly, to the field of security in
information processing systems.

2. Description of Related Art

Confidential information is stored, transmitted, and used
by many information processing systems. Therefore, tech-
niques have been developed to provide for the secure han-
dling and storing of confidential information. These tech-
niques include various approaches to creating and
maintaining a secured, protected, or isolated container, parti-
tion, or environment within an information processing sys-
tem.

BRIEF DESCRIPTION OF THE FIGURES

The present invention is illustrated by way of example and
not limitation in the accompanying figures.

FIG. 1 illustrates a system providing for modifying
memory permissions in a secure processing environment
according to an embodiment of the present invention.

FIG. 2 illustrates a processor providing for modifying
memory permissions in a secure processing environment
according to an embodiment of the present invention.

FIG. 3 illustrates an enclave page cache according to an
embodiment of the present invention.

FIG. 4 illustrates a system architecture including secure
processing environments according to an embodiment of the
present invention.

FIG. 5 illustrates a method for extending memory permis-
sions in a secure processing environment according to an
embodiment of the present invention.

FIG. 6 illustrates a method for restricting memory permis-
sions in a secure processing environment according to an
embodiment of the present invention.

DETAILED DESCRIPTION

Embodiments of an invention for modifying memory per-
missions in a secure processing environment are described. In
this description, numerous specific details, such as compo-
nent and system configurations, may be set forth in order to
provide a more thorough understanding of the present inven-
tion. It will be appreciated, however, by one skilled in the art,
that the invention may be practiced without such specific
details. Additionally, some well-known structures, circuits,
and other features have not been shown in detail, to avoid
unnecessarily obscuring the present invention.

In the following description, references to “one embodi-
ment,” “an embodiment,” “example embodiment,” “various
embodiments,” etc., indicate that the embodiment(s) of the
invention so described may include particular features, struc-
tures, or characteristics, but more than one embodiment may
and not every embodiment necessarily does include the par-
ticular features, structures, or characteristics. Further, some
embodiments may have some, all, or none of the features
described for other embodiments.

Asused in the claims, unless otherwise specified the use of
the ordinal adjectives “first,” “second,” “third,” etc. to
describe an element merely indicate that a particular instance
of'an element or different instances of like elements are being
referred to, and is not intended to imply that the elements so

2 <

10

15

20

25

30

35

40

45

50

55

60

65

2

described must be in a particular sequence, either temporally,
spatially, in ranking, or in any other manner.

Also, the terms “bit,” “flag,” “field,” “entry,” “indicator,”
etc., may be used to describe any type of storage location in a
register, table, database, or other data structure, whether
implemented in hardware or software, but are not meant to
limit embodiments of the invention to any particular type of
storage location or number of bits or other elements within
any particular storage location. The term “clear” may be used
to indicate storing or otherwise causing the logical value of
zero to be stored in a storage location, and the term “set” may
be used to indicate storing or otherwise causing the logical
value of one, all ones, or some other specified value to be
stored in a storage location; however, these terms are not
meant to limit embodiments of the present invention to any
particular logical convention, as any logical convention may
be used within embodiments of the present invention.

As described in the background section, various
approaches to creating and maintaining a secured, protected,
or isolated container, partition, or environment within an
information processing system have been developed. One
such approach involves secure enclaves as described in the
co-pending U.S. patent applications entitled “Method and
Apparatus to Provide Secure Application Execution,” filed
Jun. 19, 2012, Ser. No. 13/527,547, which provides informa-
tion regarding at least one embodiment of a secured, pro-
tected, or isolated container, partition, or environment. How-
ever, this reference is not intended to limit the scope of
embodiments of the invention in any way and other embodi-
ments may be used while remaining within the spirit and
scope of the present invention. Therefore, any instance of any
secured, protected, or isolated container, partition, or envi-
ronment used in any embodiment of the present invention
may be referred to herein as a secure enclave or an enclave.

Embodiments of the present invention provide for dynami-
cally modifying permissions to access enclave memory with-
out making that memory inaccessible, to an application run-
ning in the enclave, during the modification process. Enclave
usage models may include software running inside an enclave
using permission restrictions to optimize the performance of
read-mostly concurrent data structures, with the expectation
that readers may access the data structure throughout the
permission modification process. Embodiments of the
present invention may provide for this expectation to be met,
under some conditions, without requiring the performance-
lowering overhead of exiting from the enclave to modify the
permissions. For example, a critical code section may copy a
heap page to a new location during garbage collection, when
writers to the page must be paused, but embodiments of the
present invention provide for readers to safely continue
access.

FIG. 1 illustrates system 100, an information processing
system providing for moditying memory permissions in a
secure processing environment according to an embodiment
of the present invention. System 100 may represent any type
of information processing system, such as a server, a desktop
computer, a portable computer, a set-top box, a hand-held
device such as a tablet or a smart phone, or an embedded
control system. System 100 includes processor 110, periph-
eral control agent 120, system memory 130, and information
storage device 140. Systems embodying the present invention
may include any number of each of these components and any
other components or other elements, such as peripherals and
input/output devices. Any or all of the components or other
elements in this or any system embodiment, may be con-
nected, coupled, or otherwise in communication with each
other through any number of buses, point-to-point, or other

US 9,355,262 B2

3

wired or wireless interfaces or connections, unless specified
otherwise. Any components or other portions of system 100,
whether shown in FIG. 1 or not shown in FIG. 1, may be
integrated or otherwise included on or in a single chip (a
system-on-a-chip or SOC), die, substrate, or package.

Peripheral control agent 120 may represent any compo-
nent, such as a chipset component, including or through
which peripheral, input/output, or other components or
devices may be connected or coupled to processor 110. Sys-
tem memory 130 may be dynamic random access memory or
any other type of medium readable by processor 110. Infor-
mation storage device 140 may include any type of persistent
or non-volatile memory or storage, such as a flash memory
and/or a solid state, magnetic, or optical disk drive.

Processor 110 may represent one or more processors inte-
grated on a single substrate or packaged within a single pack-
age, each of which may include multiple threads and/or mul-
tiple execution cores, in any combination. Each processor
represented as or in processor 110 may be any type of pro-
cessor, including a general purpose microprocessor, such as a
processor in the Intel® Core® Processor Family. Intel®
Atom® Processor Family, or other processor family from
Intel® Corporation, or another processor from another com-
pany, or a special purpose processor or microcontroller.

Processor 110 may operate according to an instruction set
architecture that includes a first instruction to create a secure
enclave, a second instruction to add content to an enclave, a
third instruction to initialize an enclave, a fourth instruction to
extend memory permissions, a fifth instruction to restrict
memory permissions, and a sixth instruction to verify a per-
missions restriction. Although embodiments of the present
invention may be practiced with a processor having any
instruction set architecture and are not limited to the archi-
tecture of a processor family from Intel® Corporation, the
instructions may be part of a set of software protection exten-
sions to an existing architecture, and may be referred to herein
as an ECREATE instruction, an EADD instruction, an EINIT
instruction, an EMODPE instruction, an EMODPR instruc-
tion, and an EACCEPT instruction, respectively. Support for
these instructions may be implemented in a processor using
any combination of circuitry and/or logic embedded in hard-
ware, microcode, firmware, and/or other structures arranged
as described below or according to any other approach, and is
represented in FIG. 1 as ECREATE hardware 110-1, EADD
hardware 110-2, EINIT hardware 110-3, EMODPE hardware
110-4, EMODPR hardware 110-5, and EACCEPT hardware
110-6.

FIG. 2 illustrates processor 200, an embodiment of which
may serve as processor 110 in system 100. Processor 200 may
include core 210, core 220, and uncore 230. Core 210 may
include storage unit 212, instruction unit 214, execution unit
270, memory management unit (MMU) 216, and control unit
218. Core 220 may include storage unit 222, instruction unit
224, execution unit 280, MMU 226, and control unit 228.
Uncore 230 may include cache unit 232, interface unit 234,
processor reserved memory range registers 250, and memory
access control unit 260. Processor 200 may also include any
other circuitry, structures, or logic not shown in FIG. 2. The
functionality of ECREATE hardware 110-1, EADD hard-
ware 110-2, EINIT hardware 110-3, EMODPE hardware
110-4, EMODPR hardware 110-5, and EACCEPT hardware
110-6, as introduced above and further described below, may
be contained in or distributed among any of the labeled units
or elsewhere in processor 200.

Storage units 212 and 222 may include any combination of
any type of storage usable for any purpose within cores 210
and 220, respectively; for example, they may include any

20

30

40

45

50

55

4

number of readable, writable, and/or read-writable registers,
buffers, and/or caches, implemented using any memory or
storage technology, for storing capability information, con-
figuration information, control information, status informa-
tion, performance information, instructions, data, and any
other information usable in the operation of cores 210 and
220, respectively, as well as circuitry usable to access such
storage.

Instruction units 214 and 224 may include any circuitry,
logic, structures, and/or other hardware for fetching, receiv-
ing, decoding, interpreting, and/or scheduling instructions,
such as EMODPE, EMODPR, and EACCEPT instructions,
to be executed by cores 210 and 220, respectively. Any
instruction format may be used within the scope of the present
invention; for example, an instruction may include an opcode
and one or more operands, where the opcode may be decoded
into one or more micro-instructions or micro-operations for
execution by execution unit 270 or 280, respectively. Instruc-
tions, such as those referred to above, may be leaves of a
single opcode, such as a privileged secure enclave opcode
(e.g., ENCLS) or an unprivileged secure enclave opcode
(e.g., ENCLU), where the leaf instructions are specified by
the value in a processor register (e.g., EAX). Operands or
other parameters may be associated with an instruction
implicitly, directly, indirectly, or according to any other
approach.

Execution units 270 and 280 may include any circuitry,
logic, structures, and/or other hardware, such as arithmetic
units, logic units, floating point units, shifters, etc., for pro-
cessing data and executing instructions, such as EMODPE,
EMODPR, and EACCEPT instructions, micro-instructions,
and/or micro-operations. Execution units 270 and 280 may
include encryption units 272 and 282, respectively, which
may represent any circuitry, logic, structures, and/or other
hardware to execute any one or more encryption algorithms
and the corresponding decryption algorithms using circuitry,
logic, structures, and/or other hardware dedicated to encryp-
tion/decryption or shared within execution units 270 and 280
or elsewhere in processor 200 to perform other functions.

MMUs 216 and 226 may include any circuitry, logic, struc-
tures, and/or other hardware to manage the memory space of
cores 210 and 220, respectively. Memory management logic
supports the use of virtual memory to provide software,
including guest software running in a VM, with an address
space for storing and accessing code and data that is larger
than the address space of the physical memory in the system,
e.g., system memory 130. The virtual memory space of cores
210 and 220 may be limited only by the number of address
bits available to software running on the processor, while the
physical memory space of cores 210 and 220 is further limited
to the size of system memory 130. MMUs 216 and 226
support a memory management scheme, such as paging, to
swap the executing software’s code and data in and out of
system memory 130 on an as-needed basis. As part of this
scheme, the software may access the virtual memory space of
the processor with an un-translated address that is translated
by the processor to atranslated address that the processor may
use to access the physical memory space of the processor.

Accordingly, MMU 216 and 226 may include translation
lookaside buffers (each, a TLB) 217 and 227, respectively, to
stores translations of a virtual, logical, linear, or other un-
translated address to a physical or other translated address,
according to any known memory management technique,
such as paging. To perform these address translations, MMU
216 and 226 may refer to one or more data structures stored in
processor 200, system memory 130, any other storage loca-
tion in system 100 not shown in FIG. 1, and/or any combina-

US 9,355,262 B2

5

tion of these locations. The data structures may include page
directories and page tables according to the architecture of the
Pentium® Processor Family.

Control units 218 and 228 may include any microcode,
firmware, circuitry, logic, structures, and/or other hardware to
control the operation of the units and other elements of cores
210 and 220, respectively, and the transfer of data within, into,
and out of cores 210 and 220. Control units 218 and 228 may
cause cores 210 and 220 and processor 200 to perform or
participate in the performance of method embodiments of the
present invention, such as the method embodiments
described below, for example, by causing cores 210 and 220
to execute instructions, such as EMODPE, EMODPR, and
EACCEPT instructions, received by instruction units 214 and
224 and micro-instructions or micro-operations derived from
instructions received by instruction units 214 and 224.

Cache unit 232 may include any number of cache arrays
and cache controllers in one or more levels of cache memory
in a memory hierarchy of information processing system 100,
implemented in static random access memory or any other
memory technology. Cache unit 232 may be shared among
any number of cores and/or logical processors within proces-
sor 200 according to any approach to caching in information
processing systems. Cache unit 232 may also include one or
more memory arrays to be used as enclave page cache (EPC)
240 as further described below.

Interface unit 234 may represent any circuitry, logic, struc-
tures, and/or other hardware, such as a link unit, a bus unit, or
amessaging unit to allow processor 200 to communicate with
other components in a system such as system 100 through any
type of bus, point to point, or other connection, directly or
through any other component, such as a bridge, hub, or
chipset. Interface unit 234 may include one or more inte-
grated memory controllers to communicate with a system
memory such as system memory 130 or may communicate
with a system memory through one or more memory control-
lers external to processor 200.

Processor reserved memory range registers (PRMRR) 250
may represent any one or more storage locations in storage
units 212 and 222, elsewhere in processor 200, and/or copies
thereofin uncore 230. PRMRR 250 may be used, for example
by configuration firmware such as a basic input/output sys-
tem, to reserve one or more physically contiguous ranges of
memory called processor reserved memory (PRM). Memory
access control unit 260 may represent any circuitry, struc-
tures, logic, and/or other hardware anywhere in processor 200
that may control access to PRM such that EPC 240 may be
created within the system memory space defined as PRM.

In an embodiment, PRM is of a size that is an integer power
of two, e.g. 32 MB, 64 MB, or 128 MB, and is aligned to a
memory address that is a multiple of that size. PRMRR 250
may include one or more instances of a read-only PRMMR
valid configuration register 252 to indicate the valid sizes to
which PRM may be configured, one or more instances of a
PRMMR base register 254 and a PRMMR mask register 256
to define one or more base addresses and ranges of PRM.

EPC 240 is a secure storage area in which software may be
protected from attacks by malware operating at any privilege
level. One or more secure enclaves may be created such that
each enclave may include one or more pages or other regions
of EPC 240 in which to store code, data, or other information
in a way that it may only be accessed by software running
inside that enclave, except according to embodiments of the
present invention. For example, a secure enclave may be used
by a software application so that only that software applica-
tion, while running inside that enclave, may access the con-
tents of that enclave, except according to embodiments of the

10

15

20

25

30

35

40

45

50

55

60

65

6

present invention. Except according to embodiments of the
present invention, no other software, not even an operating
system or a virtual machine monitor, may read the unen-
crypted contents of that enclave, modify the contents of that
enclave, or otherwise tamper with the contents of that enclave
while the content is loaded into the EPC (assuming that the
enclave is a production enclave, as opposed to, for example, a
debug enclave). However, the contents of the enclave may be
accessed by software executing from within that enclave on
any processor in system 100. This protection is accomplished
by the memory access control unit 260 operating according to
the secure enclaves architecture.

In FIG. 2, EPC 240 is shown in cache unit 232, where it
may be a sequestered portion of a shared cache or a dedicated
memory. Within or on the same die as processor 200, EPC 240
may be implemented in static random access memory,
embedded dynamic random access memory, or any other
memory technology. EPC 240 may also or additionally be
implemented external to processor 200, for example within a
secure region of system memory 130. To protect the content
of secure enclaves when it is not stored on-die, encryption
units 272 and/or 282 may be used to encrypt the content
before it is transferred off-die and to decrypt the content
transferred back into EPC 240 on-die. Other protection
mechanisms may also be applied to protect the content from
replay and other attacks.

FIG. 3 illustrates EPC 300, an embodiment of which may
serve as EPC 240 in FIG. 2. In FIG. 3, EPC 300 includes
secure enclave control structure (SECS) 310, thread control
structure (TCS) region 320, and data region 330. Although
FIG. 3 shows EPC 300 divided into three separate regions.
EPC 300 may be divided into any number of chunks, regions,
or pages, each of which may be used for any type of content.
In one embodiment, EPC 300 is divided into 4 kilobyte (KB)
pages and is aligned to an address in system memory 130 that
is a multiple of 4 KB, SECS 310 may be any one of the 4 KB
pages in EPC 300, TCS region 320 may be any number of
contiguous or non-contiguous 4 KB pages, and data region
330 may be any number of contiguous or non-contiguous 4
KB pages. Furthermore, although FIG. 3 shows one SECS,
one TCS region, and one data region corresponding to one
secure enclave, an EPC may include any number of SECS and
any number of TCS and data regions, so long as each enclave
has one and only one SECS, each valid TCS and valid data
region (e.g., page) belongs to one and only one enclave, and
all of the SECS, TCS, and data pages fit within the EPC (or
may be paged out of and back into the EPC).

An SECS may created by the execution of an ECREATE
instruction to contain metadata to be used by hardware, and
accessible only by hardware (i.e., not readable, writable, or
otherwise accessible by software, whether running inside or
outside the enclave), to define, maintain, and protect the
enclave. One or more TCSs may also be associated with a
secure enclave. A TCS contains metadata used by the hard-
ware to save and restore thread specific information when
entering and exiting the enclave.

The security attributes of each page are stored in a micro-
architectural data structure called an enclave page cache map
(EPCM) that is used by memory access control unit 260 to
enforce the protections provided by the secure enclaves archi-
tecture. The EPCM stores one entry for each page in the EPC.
Each entry includes an identifier (e.g., a 64 bit field) of the
SECS (i.e., the enclave) to which the page belongs. These
identifiers may be referred to by secure enclaves instructions
(e.g., the address of the SECS may be stored in a register such
as RCX, the address of a micro-architectural data structure
including the address of the SECS may be stored in a register

US 9,355,262 B2

7

such as RBX, etc.) to provide for the SECS to be read by
hardware in order to execute the instruction.

Each entry in an EPCM may also include a number of bits
or fields to define the access permissions and/or other
attributes of the corresponding page. A read bit (R-bit) may be
set to indicate that the page is readable from within the
enclave. A write bit (W-bit) may be set to indicate that the
page is writable from within the enclave. An execute bit
(X-bit) may be set to indicate that the page is executable from
within the enclave. A modified bit (M-bit) may be set to
indicate that an access permission or other attribute of the
page has been modified. A blocked-epoch field (BEPOCH)
may be set to indicate the enclave epoch to be flushed for the
page to be evicted from the EPC.

FIG. 4 illustrates architecture 400, a system architecture
including secure processing environments according to an
embodiment of the present invention. In one embodiment,
system 410 includes enclave 420 and enclave 430, each of
which be created by the invocation and execution of an
ECREATE instruction. Applications 422 and 432 may each
represent application software, or any thread, task, process, or
other instance of instructions, code, or software loaded into
enclaves 420 and 430, respectively, each of applications 422
and 432 may be loaded into the enclave by the invocation and
execution of one or more EADD instructions. Enclaves 420
and 430 may be initialized by the invocation and execution of
an EINIT instruction. Applications 422 and 432 have entered
the enclaves, for example by invoking an EENTER instruc-
tion. Therefore, applications 422 and 432 may be described as
in, within, or executing or running in or within enclaves 420
and 430, respectively. Although FIG. 4 shows one application
per enclave, in other embodiments, a single application may
nm within more than one enclave, and/or more than one
application may nm within a single enclave.

System 410 also includes one or more operating systems
(each, an OS), virtual machine monitors (each, a VMM), or
other system control or privileged software, each of which
may operate on any one or more processors in system 410,
within or outside of an enclave. For convenience, any such
privileged software, whether or not an OS, is referred to in this
description as OS 412. OS 412 (or any thread, task, process,
or other instance of OS 412) may run at a processor privilege
level (e.g. ring-0 or supervisor mode) that is more privileged
than the processor privilege level (e.g., ring-3 or user mode) at
which applications 422 and 432 run.

FIG. 4 also shows EPCM 440, for storing the security
attributes of the EPC pages of enclaves 420 and 420, and two
representative entries 450 and 460 of EPCM 440. Entry 450
includes read bit 452, write bit 454, and execute bit 456 to
define the read, write, and execute access permissions of
representative EPC page 424 of enclave 420. Entry 450 also
includes modified bit 458 to indicate the status of a modifi-
cation to the permissions of EPC page 424 and BEPOCH field
459 to indicate the enclave epoch to be flushed for page 424 to
be evicted from EPC 300. Entry 460 includes read bit 462,
write bit 464, and execute bit 466 to define the read, write, and
execute access permissions of representative EPC page 434
of enclave 430. Entry 460 also includes modified bit 468 to
indicate the status of a modification to the permissions of EPC
page 434 and BEPOCH field 469 to indicate the enclave
epoch to be flushed for page 434 to be evicted from EPC 300.

Embodiments of the present invention provide for a
memory permissions extension instruction (e.g. an EMODPE
instruction) to be used by an application in an enclave, such as
application 422 or 432, to extend the access permissions of
(i.e., make more easily accessible and/or make accessible
under an increased number of conditions) memory (e.g.,

40

45

8

pages) in or allocated to its enclave, such that the extended
permissions immediately become available to the application
running within the enclave. In an embodiment, the memory
permissions extension instruction may be a leaf of an unprivi-
leged secure enclave instruction (e.g., ENCLU), such that it
may be invoked by an application running in an enclave at a
processor privilege level (e.g., ring-3) that is less privileged
than a processor privilege level (e.g., ring-0) at which an OS
runs outside of the enclave. The operation of a processor in
response to a memory permissions extension instruction
according to an embodiment of the present invention is fur-
ther described below in the description of method 500 of F1G.
5.

Embodiments of the present invention also provide for an
application in an enclave, such as application 422 or 432, to
restrict the access permissions of (i.e., make less easily acces-
sible and/or make accessible under a decreased number of
conditions) memory (e.g., pages) in or allocated to its enclave
by invoking a system call to a system software, such as OS
412, to perform a memory permissions restriction instruction
(e.g., EMODPR) instruction. In an embodiment, the memory
permissions restriction instruction may be a leaf of a privi-
leged secure enclave instruction (e.g., ENCLS), such that it
may be invoked by an OS, VMM, or other system software
running outside of an enclave at a processor privilege level
(e.g., ring-0) that is more privileged than a processor privilege
level (e.g., ring-3) at which an application runs inside of the
enclave, but it cannot be invoked directly by the application.
The restricted permissions become effectively immediately
upon the execution of the EMODPR instruction, with no
further action required from the application that invoked the
system call; however, the application may verify that the
restricted permission have become effective by invoking an
EACCEPT instruction, which may be a leaf of the ENCLU
instruction. The operation of a processor in response to a
memory permissions restriction instruction according to an
embodiment of the present invention is further described
below in the description of method 600 of FIG. 6.

FIGS. 5 and 6 illustrate methods 500 and 600, methods for
extending and restricting, respectively, memory permissions
in a secure processing environment according to an embodi-
ment of the present invention. Although method embodi-
ments of the invention are not limited in this respect, refer-
ence may be made to elements of FIGS. 1, 2, 3, and 4 to help
describe the method embodiments of FIGS. 5 and 6. Also,
methods 500 and 600 may be described and illustrated, for
convenience, using specific instruction names such as
EMODPE, EMODPR, and EACCEPT; however, embodi-
ments of the present invention are not limited to these spe-
cifically named instructions.

Inbox 510 of method 500, an application, such as applica-
tion 422, running in an enclave, such as enclave 420, at a user
mode privilege level, invokes an EMODPE instruction to
extend the permissions according to which a page, such as
page 424, in EPC 240 may be accessed. The access permis-
sions may include read access, write access, execute access,
and/or any other permission indicator to indicate how the
page may be accessed. For example, the application may
invoke the EMODPE instruction in order to change a page
designated as read-only to read-write. The EMODPE instruc-
tion may have associated with it a first operand to identify the
page, for example, using a linear or other address, and a
second operand to identify the new permissions. Alterna-
tively, the identity of the page and/or the new permissions or
change to the existing permissions may be indicated accord-
ing to any other approach.

US 9,355,262 B2

9

In box 520, a response to the EMODPE instruction by a
processor, such as processor 200, begins. The response may
be performed entirely by processor hardware, such as instruc-
tion unit 214 and execution unit 270, under the control of
microcode or other control logic of a control unit such as
control unit 218, without any other instruction being invoked
by application 422 or other software. In one embodiment, a
processor executes an EMODPE instruction only when
invoked from user mode.

In box 522, in response to the EMODPE instruction, the
processor changes the EPC access permissions of page 424 as
specified by the EMODPE instruction. For example, the pro-
cessor changes the contents (e.g., from zero to one) of one or
more permission bits or other indicators in an EPCM entry
corresponding to the page, such as R-bit 452, W-bit 454,
and/or X-bit 456 of EPCM entry 450. Furthermore, the pro-
cessor changes the page’s access permissions such that the
new permissions are immediately effective, e.g., without set-
ting or changing M-bit 458. Therefore, the execution of the
EMODRPE instruction differs from the execution of an access
permission modification instruction such as EMOD, in
response to which the processor sets M-bit 458 such that the
page cannot be accessed until application 422 or other soft-
ware clears M-bit 458 by invoking an EACCEPT instruction.
The execution of the EMODPE instruction also differs from
the execution of access permission restriction instruction
EMODPR because BEPOCH field 459 is not set in response
to EMODPE as it would be in response to EMODPR, as
described below.

Inbox 524, the processor’s response to and/or execution of
the EMODPE instruction ends, such that the processor has
responded to and/or executed the EMODPE instruction with-
out making the page inaccessible to application 422.

Inbox 530, application 422 in enclave 420 requests OS 412
(or other privileged software such as a VMM) to update the
permissions of page 424 to match the new permissions
applied in box 522, for example, by invoking a system call for
OS 412 (or other privileged software such as a VMM) to
change the permissions of page 424 in an entry in a page
directory, page table, or other structure through which page
424 is accessed. Note that application 422 may continue to
access page 424 according to the old (more restrictive) per-
missions before OS 412 (or other privileged software such as
a VMM) has updated the permissions in the page tables. In
box 532, OS 412 (or other privileged software such as a
VMM), running outside of enclave 420 in supervisor mode,
updates the permissions for page 424 in the page tables.

In box 534, application 422 in enclave 420 attempts to
access page 424 according to the new permissions. In box
536, if the untranslated (e.g., linear) address with which
application 422 attempts to access page 424 is stored in TLB
217, method 500 continues in box 550. In box 536, if the
untranslated (e.g., linear) address with which application 422
attempts to access page 424 is not stored in TLB 217, method
500 continues in box 538. In box 538, application 422 in
enclave 420 successtully accesses page 424 according to the
new permissions, without causing an asynchronous exit from
enclave 420.

In box 550, the attempt to access page 424 causes an
asynchronous exit (AEX) from enclave 420. In box 552, OS
412 (or other privileged software such as a VMM), running
outside of enclave 420 in supervisor mode, updates or flushes
the corresponding entry in TLB 217. In box 554, OS 412 (or
other privileged software such asa VMM) restarts application
422 in enclave 420. In box 556, application 422 in enclave
420 successfully accesses page 424 according to the new
permissions.

5

10

15

20

25

30

35

40

45

50

55

60

65

10

Turning to method 600, in box 610 an application, such as
application 432, running in an enclave, such as enclave 430, at
auser mode privilege level, invokes a system call to an OS (or
other privileged software such as a VMM), such as OS 412, to
request the OS (or other privileged software such as a VMM)
to restrict the permissions according to which a page, such as
page 434, in EPC 240 may be accessed. The access permis-
sions may include read access, write access, execute access,
and/or any other permission indicator to indicate how the
page may be accessed. For example, the application may
invoke the system call in order to change a page designated as
read-write to read-only.

In box 612, in response to the system call of box 610, OS
412 (or other privileged software such as a VMM), running
outside enclave 430 at a supervisor mode privilege level,
invokes an EMODPR instruction to restrict the permissions
according to which page 434 in EPC 240 may be accessed.
The EMODPR instruction may have associated with it a first
operand to identity the page, for example, using a linear or
other address, and a second operand to identify the new per-
missions. Alternatively, the identity of the page and/or the
new permissions or change to the existing permissions may
be indicated according to any other approach.

In box 620, a response to the EMODPR instruction by a
processor, such as processor 200, begins. The response may
be performed entirely by processor hardware, such as instruc-
tion unit 214 and execution unit 270, under the control of
microcode or other control logic of a control unit such as
control unit 218, without any other instruction being invoked
by application 432 or other software. In one embodiment, a
processor executes an EMODPR instruction only when
invoked from supervisor mode.

In box 622, in response to the EMODPR instruction, the
processor changes the EPC access permissions of page 434 as
specified by the EMODPR instruction. For example, the pro-
cessor changes the contents (e.g., from one to zero) of one or
more permission bits or other indicators in an EPCM entry
corresponding to the page, such as R-bit 462, W-bit 464,
and/or X-bit 466 of EPCM entry 460. Furthermore, the pro-
cessor changes the page’s access permissions such that the
new permissions are immediately effective, e.g., without set-
ting or changing M-bit 468. Therefore, the execution of the
EMODRPR instruction differs from the execution of an access
permission modification instruction such as EMOD, in
response to which the processor sets M-bit 468 such that the
page cannot be accessed until application 432 or other soft-
ware clears M-bit 468 by invoking an EACCEPT instruction.

In box 624, in response to the EMODPR instruction, the
processor sets BEPOCH field 469 to the identity of the current
enclave epoch thereby providing, as further described below,
for the tracking and flushing of TLB entries that are made
stale by the permissions restriction. Therefore, application
432 may proceed safely with a critical code section after the
TLB entries belonging to the current enclave epoch have been
flushed.

Inbox 626, the processor’s response to and/or execution of
the EMODPR instruction ends, such that the processor has
responded to and/or executed the EMODPR instruction with-
out making the page inaccessible to application 432.

In box 630, OS 412 (or other privileged software such as a
VMM) tracks enclave threads with TLB entries made stale by
the permissions restriction, for example by invoking an
ETRACK instruction.

In box 632, OS 412 (or other privileged software such as a
VMM) updates the permissions of page 434 to match the new
permissions applied in box 622, for example, by changing the
permissions of page 434 in an entry in a page directory, page

US 9,355,262 B2

11

table, or other structure through which page 434 is accessed.
Note that application 432 may continue to access page 434
according to the new (more restrictive) permissions applied in
box 522 before OS 412 (or other privileged software such as
a VMM) has updated the permissions in the page tables.

In box 634, OS 412 (or other privileged software such as a
VMM) sends inter-processor-interrupts (IPIs) to trigger
enclave thread exit (i.e., all threads using page 434 exit
enclave 430) and a TLB shootdown. In box 636, all such
threads exit enclave 430, for example by invoking an EEXIT
instruction, and the TLB shootdown flushes TLB entries
made stale by the permissions restriction.

Inbox 640, application 432 in enclave 430 verifies that the
permission restriction has been performed, for example by
invoking an EACCEPT instruction. Note, however, that the
actions of box 640, including the use of an EACCEPT instruc-
tion, is not required for application 432 to access page 434
according to the new permissions. Also, the verification will
succeed only if all relevant threads have exited the enclave,
for example in box 636.

In box 650, application 432 in enclave 430 attempts to
access page 434 according to the new permissions. In box
652, application 432 in enclave 430 successfully accesses
page 434 according to the new permissions, without causing
an asynchronous exit from enclave 430.

Note that in the time period between the updating of the
EPCM to reflect the new permissions (e.g., box 522 of method
500 or box 622 of method 600) and the updating of the page
tables to reflect the new permissions (e.g., box 532 of method
500 or box 632 of method 600), the page is available to an
enclave thread, but access to the page (e.g., page 432 or page
434) is restricted by the more restrictive of the EPCM per-
missions and the page table permissions. Therefore, in
method 500, which illustrates an instruction to extend the
permissions, the page is accessed by an enclave thread during
this time period according to the old permissions, and in
method 600, which illustrates an instruction to restrict the
permissions, the page is accessed by an enclave thread during
the time period according to the new permissions.

In various embodiments of the present invention, the meth-
ods illustrated in FIGS. 5 and 6 may be performed in a
different order, with illustrated boxes combined or omitted,
with additional boxes added, or with a combination of reor-
dered, combined, omitted, or additional boxes. Furthermore,
method embodiments of the present invention are not limited
to methods 500 and 600 or variations thereof. Many other
method embodiments (as well as apparatus, system, and other
embodiments) not described herein are possible within the
scope of the present invention.

Embodiments or portions of embodiments of the present
invention, as described above, may be stored on any form of
amachine-readable medium. For example, all or part of meth-
ods 500 and 600 may be embodied in software or firmware
instructions that are stored on a medium readable by proces-
sor 110, which when executed by processor 110, cause pro-
cessor 110 to execute an embodiment of the present inven-
tion. Also, aspects of the present invention may be embodied
in data stored on a machine-readable medium, where the data
represents a design or other information usable to fabricate all
or part of processor 110.

Thus, embodiments of an invention for modifying memory
permissions in a secure processing environment have been
described. While certain embodiments have been described,
and shown in the accompanying drawings, it is to be under-
stood that such embodiments are merely illustrative and not
restrictive of the broad invention, and that this invention not
be limited to the specific constructions and arrangements

20

25

30

40

45

60

12

shown and described, since various other modifications may
occur to those ordinarily skilled in the art upon studying this
disclosure. In an area of technology such as this, where
growth is fast and further advancements are not easily fore-
seen, the disclosed embodiments may be readily modifiable
in arrangement and detail as facilitated by enabling techno-
logical advancements without departing from the principles
of the present disclosure or the scope of the accompanying
claims.

What is claimed is:
1. A processor comprising:
instruction hardware to receive a first instruction and a
second instruction, wherein the first instruction is to
extend access permissions for a page in a secure enclave
and the second instruction is to be called, by an applica-
tion from within the secure enclave, an operating system
outside the secure enclave to invoke the second instruc-
tion to restrict access permissions for the page;
execution hardware to execute the first instruction and the
second instruction, wherein execution of the first
instruction and the second instruction includes changing
at least one of a read, write, and execute access permis-
sion in an enclave page cache map entry without setting
a modified bit in the enclave page cache map entry,
wherein execution of the second instruction includes
storing an enclave epoch value in the enclave page cache
map entry, and wherein the page is immediately acces-
sible from inside the secure enclave according to the
changed access permissions; and
a translation lookaside buffer, wherein the operating sys-
tem is to track enclave threads with translation lookaside
buffer entries made stale by the changed access permis-
sions and send interprocessor interrupts to trigger
enclave thread exits and a translation lookaside buffer
shootdown.
2. The processor of claim 1, wherein the first instruction is
executable from within the secure enclave.
3. The processor of claim 2, wherein the first instruction is
executable only from within the secure enclave.
4. The processor of claim 1, wherein the second instruction
is executable only in supervisor mode.
5. A method comprising:
issuing a first instruction to a hardware processor to extend
access permission for a page in a secure enclave; and
executing, by the hardware processor, the first instruction,
wherein execution of the first instruction includes
changing at least one of a read, write, and execute access
permission in an enclave page cache map entry without
setting a modified bit in the enclave page cache map
entry, and wherein the page is immediately accessible
from inside the secure enclave according to the changed
access permissions;
calling, by an application from within the secure enclave,
an operating system outside the secure enclave to invoke
a second instruction to restrict at least one access per-
mission for the page;
issuing the second instruction to the hardware processor to
restrict the at least one access permission for the page;
executing, by the hardware processor, the second instruc-
tion, wherein execution of the second instruction
includes changing at least one of the read, write, and
execute access permission in the enclave page cache
map entry, and storing an enclave epoch value in the
enclave page cache map entry, and wherein the page is
immediately accessible from inside the secure enclave
according to the changed access permissions;

US 9,355,262 B2

13

tracking, by the operating system, enclave threads with
translation lookaside buffer entries made stale by the
changed access permissions; and

sending, by the operating system, interprocessor interrupts
to trigger enclave thread exits and a translation lookaside
buffer shootdown.

6. The method of claim 5, further comprising:

accessing, by an application from within the secure
enclave, the page according to the changed access per-
missions, and

updating, by an operating system from outside the secure
enclave, page tables to reflect the changed access per-
missions.

7. The method of claim 5, further comprising:

attempting, by an application from within the secure
enclave, to access the page after execution of the first
instruction;

determining, by the hardware processor, that a mapping for
the page exists in a translation lookaside buffer; and

causing, by the hardware processor, a page fault and an
asynchronous exit from the secure enclave.

8. The method of claim 7, further comprising:

handling, by an operating system from outside the secure
enclave, the page fault; and

restarting, by the operating system, the application in the
secure enclave.

9. The method of claim 5, further comprising verifying, by

the application from within the secure enclave, that the
changed access permissions have been set.

10

15

20

25

14

10. A system comprising:

a memory; and

aprocessor including instruction hardware to receive a first
instruction and a second instruction, wherein the first
instruction is to extend access permissions for a page
loaded from the memory into a secure enclave and the
second instruction is to be called, by an application from
within the secure enclave, an operating system outside
the secure enclave to invoke the second instruction to
restrict access permissions for the page;

execution hardware to execute the first instruction and the
second instruction, wherein execution of the first
instruction and the second instruction includes changing
at least one of a read, write, and execute access permis-
sion in an enclave page cache map entry without setting
a modified bit in the enclave page map entry, wherein
execution of the second instruction includes storing an
enclave epoch value in the enclave page cache map
entry, and wherein the page is immediately accessible
from inside the secure enclave according to the changed
access permissions; and

a translation lookaside buffer, wherein the operating sys-
tem is to track enclave threads with translation lookaside
buffer entries made stale by the changed access permis-
sions and send interprocessor interrupts to trigger
enclave thread exits and a translation lookaside buffer
shootdown.

